

IVIO	violion and Forces in a Gravitational Fleid. Set S		
Set	Problem	Solution	
3	1	When he is facing due south. The velocity of the hammer is the tangent to the circle at any point on the circle. When he is facing due south the tangent is a horizontal line	
		westerly (assuming that the hammer thrower is rotating clockwise N to S).	
	2	It allows him to run the curve at high speed, by leaning he uses the frictional force to	
		provide the centripetal force.	
	3	The friction between the wheels and the surface	
	4		
	5	$a = \frac{v^2}{r} = \frac{(3.5ms^{-1})^2}{15m}$	
		0.82 m s^{-2} toward the centre of the circle	
	6	$F = \frac{mv^2}{mv^2} = \frac{0.585 kg \times 11.5m s^{-1^2}}{1.25m s^{-1^2}}$	
		$\begin{array}{c} r & 1.25m \\ F = 61.9 \text{ N} \end{array}$	
	7a	$\frac{1}{2\pi r}$ $\frac{2\pi \times 3.80m}{2\pi}$	
	,	$v = \frac{155}{155}$	
		$v = 1.54 \text{ m s}^{-2}$	
	7b	$mv^2 = 28 \ kg \times 1.54 \ m \ s^{-1^2}$	
		$F = \frac{1}{r} = \frac{38 m}{38 m}$	
		17.5 N	
	8	$110 \text{ km h}^{-1} = 30.6 \text{ m s}^{-1}$	
		For banked tracks tan $\omega = \frac{v^2}{2}$	
		rg	
		$\tan \varphi = \frac{30.6 \text{ ms}^{-1}}{2}$	
		$300 m \times 9.8 m s^{-2}$	
	0.0	$\psi = 17.6^{\circ}$	
	98	$\sin \theta = 2.5/4$ $\theta = 38.7^{\circ}$	
		$T = \frac{mg}{55 kg \times 9.8 ms^{-1}}$	
		$\frac{1}{\cos\theta} = \frac{\cos 38.7^{\circ}}{\cos 38.7^{\circ}}$	
	9b	Centripetal force = T sin θ = 691×sin 38.7° = 432N	
		Combine $F = \frac{mv^2}{2}$ and $v = \frac{2\pi r}{2}$	
		$\frac{r}{r} = \frac{t}{r}$	
		Leads to $t = \frac{2}{3} \left \frac{4\pi^2 mr}{r} \right ^2 = \frac{2}{3} \left \frac{4\pi^2 \times 55 kg \times 2.5 m}{r^2} \right ^2$	
		$\frac{\sqrt{F}}{\sqrt{432N}}$	
	10a	Ves, acceleration is defined as changing velocity $-$ in circular motion although speed may	
	104	be constant the velocity is changing because the direction is constantly changing so the	
		car is accelerating.	
	10b	$24.0 \text{ km h}^{-1} = 6.67 \text{ m s}^{-1}$	
		mv^2 1250 kg × 6.67 ms ^{-1²}	
		$F = \frac{1}{r} = \frac{180}{180m}$	
		F = 3.09 kN	
	10c	$v^2 = 6.67 m s^{-1^2}$	
		$tan\varphi = \frac{1}{ra} = \frac{1}{18m \times 9.8ms^{-1}}$	
		$\varphi = 15.3^{\circ}$	
	11	$v = \sqrt{rgtan\varphi} = \sqrt{70.0 \ m \times 9.8 \ ms^{-1}xtan \ 20^{\circ}} = 15.8 \ ms^{-1}$	
	12a	3800 rpm =63.3rps so time for 1 revolution =0.0158 s	
		Lowest speed at smallest r	
		$v = \frac{2\pi r}{2\pi} = \frac{2\pi \times 0.095 m}{2\pi}$	
		t = 0.0158 s	
	1.01	V = 5 / .0 III S	
	12b	$2\pi r = 2\pi \times 0.12 m$	
		$v = \frac{1}{t} = \frac{1}{0.0158}$	
		$v = 47.7 \text{ m s}^{-1}$	

-

Motion and Forces in a Gravitational Field: Set 3

Set	Problem	Solution
		$v^2 = 47.7 m s^{-1^2}$
		$a = \frac{1}{r} = \frac{1}{0.12m}$
		$a = 1.90 \times 10^4 \text{ m s}^{-2}$
	12c	$a=F/m=8.2 \times 10^{-3}N/98 \times 10^{-12}kg=8.37 \times 10^{7} m s^{-2}$
		$v = \sqrt{ar} = \sqrt{8.37 \times 10^7 m s^{-1} \times 0.12 m} = 3169 \ m s^{-1}$
		$\epsilon - \frac{v}{1} - \frac{3169 m s^{-1}}{1000}$
		$J = \frac{1}{2\pi r} = \frac{1}{2\pi \times 0.12}$
		f=42kHz (17.7 kHz)
	13a	Arrow towards the centre
	13b	$F = \frac{mv^2}{r} = \frac{1.7 \times 10^{-27} kg \times 7.8 \times 10^6 m s^{-12}}{200 m} = 2.59 \times 10^{-16} \text{N}$
	13c	Graph should show that F increases with v^2 , so when v changes from 5 to 10, F increases
		by a factor of 4.
	13d	Distance travelled = number laps $\times \pi d = 440,000 \times \pi \times 400 \text{ m}$
		$=5.53 \times 10^8 \mathrm{m}$
	13e	In 2.5s vertical displacement $s = \frac{1}{2} at^2 = \frac{1}{2} \times -9.8 \text{ m s}^{-2} \times 2.5 \text{ s}^{-2} = -30.6 \text{ m}$
		it would drop 30.6 m
	13f	Magnets to repel protons upwards